در این تحقیق، یک مدل ترکیبی با استفاده از الگوریتم بهینهسازی آکویلا(Aquila Optimizer) و بهینهسازی خرگوش مصنوعی(Artificial Rabbits Optimization) مبتنی بر یادگیری مخالفت آشوبناک برای حل مسائل بهینهسازی پیوسته پیشنهاد شده است. مرحله اکتشاف(exploration) سراسری الگوریتم بهینهسازی آکویلا با مرحله بهرهبرداری(exploitation) محلی بهینهسازی خرگوش مصنوعی ترکیب میشود تا قابلیتهای جستجو تقویت شود. برروی مدل ترکیبی، ده مدل مختلف از نگاشت آشوب تست شده است. آزمایشهای شبیهسازی در محیط متلب 2018 برروی 23 تابع استاندارد IEEE CEC2019 انجام شده است. نتایج با الگوریتم بهینهسازی آکویلا و الگوریتم بهینهسازی خرگوش مصنوعی مقایسه شده است.
راهنمای استفاده
فایل با فرمت rar بارگذاری شده است که برای باز کردن به نرمافزار winrar نیاز دارید.
محتوای فایل دانلودی
فایل شبیهسازی شده با متلب 2018 به بالا
مقاله اصلی به زبان انگلیسی(2022)
شبه کد مدل داخل مقاله اصلی
فلوچارت مدل داخل مقاله اصلی
فیلم اجرای کدها